Comparing Futures for the Sacramento-San Joaquin Delta

Supported with funding from Stephen D. Bechtel, Jr. David and Lucile Packard Foundation

Engineers:

Jay Lund, UC Davis*
William Fleenor, UC Davis

Economists:

Ellen Hanak, PPIC* Richard Howitt, UC Davis

Biologists:

Peter Moyle, UC Davis William Bennett, UC Davis Geologist:

Jeffrey Mount, UC Davis

*Lead authors

Prepare for Fundamental, Inevitable, and Irreversible Change

Sea level rise: 1 ft by 2050, 3 ft by 2100

Median chance of island flooding by 2050: 95%

- Delta is at a tipping point
 - Land subsidence
 - Sea level rise
 - Floods
 - Future earthquakes
- Ecosystem changes
 - Invasive species
 - Habitat alteration
- Prohibitive costs for maintaining all islands

Delta of Tomorrow Will be Different

- Large bodies of open water and higher sea level
- Increased salinity, habitat variability
- Higher water quality costs – even if all islands remain intact

Based on economic value of land and assets, many islands not worth repairing after flooding (blue)

Comparing Water Export Strategies Long-Term (to Mid-Century)

- Current Strategy: through the Delta
- Peripheral Canal: around the Delta
- Dual Conveyance: both through and around the Delta
- No Exports: use other water source: and use less

Evaluation Criteria: "Co-Equal" Goals

- Delta ecosystem
 - Delta Vision: "sustainable environment"
 - Our report: viability of native fish populations
 - Expert judgment
- Water supply
 - Delta Vision: "reliable water supply"
 - Our report: statewide economic costs
 - Construction & operations, water quality, supply cutbacks
- Use ranges to capture uncertainty

Decision Tree for Economic Cost

Through-Delta Pumping: Low Chance of Restoring Fish, High Costs

Ending Exports: Better for Fish, But Even More Costly

Peripheral Canal: Mid-range for Fish Viability, Least Costly

Dual Conveyance: Similar to PC for Fish, Probably More Costly

Similar Ranking for Chinook Salmon

Is there a better tradeoff?

Delta Challenges and Changes

- Sea level rise and climate warming, combined with other external processes, make major change is inevitable in the Delta
- For "co-equal" ecosystem and statewide economic objectives, a peripheral canal appears most promising.
- Regulation and governance of the New Delta will be hard to negotiate.
 - Delta is one example of how climate change will shake up long-cherished notions of environmental management and sustainability

Actively Prepare for a Changing Delta Ecosystem

- Habitat conservation plans should prepare for
 - Climate change
 - Rising sea levels
 - Permanent levee failures
 - New invasive species
- Ecosystem management should favor diverse habitat and flow for multiple species
- Experimentation and detailed modeling needed
 - Include flooding at least one island

Develop a New Framework for Delta Governance and Regulation

- Build a more centralized, decision-capable system
- State leadership (governor and legislature) is required; stakeholders cannot negotiate on their own
- Address regulatory consequences of sea level rise, climate warming, and island failures now

For More Information

 Research Brief, main report, and technical appendices available at: <u>www.ppic.org</u>

Photo credit: Harold E. Malde, courtesy of The Nature Conservancy